[スポンサーリンク]

化学者のつぶやき

分極したBe–Be結合で広がるベリリウムの化学

[スポンサーリンク]

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初めて実現した。Be–Be結合の分極は実験と計算の両面から支持された。さらに、高度に分極したBe–Be結合をもつ錯体はベリリルアニオン供給能を示した。

■ベリリウムの特性と化学

原子番号4であるベリリウムは、第二族のアルカリ土類金属としては特異な性質をもつにも関わらず、あまり研究されてこなかった元素である。ベリリウムは原子半径に対するイオン化エネルギーが大きく、完全な電荷分離が難しいため、ベリリウムを含む結合は共有結合性を有する[1, 2]。しかし、ベリリウムの化学は、その高い生体毒性から、非放射性元素の中で最も研究が進んでいない。

ベリリウム化学の中でも、ベリリウム–ベリリウム単結合(Be–Be結合)をもつ化学種の合成は挑戦的な課題である。実際、同じく第二族のMg–Mg結合をもつ錯体が2000年代初頭に合成されたのをきっかけに、様々なベリリウム(II)錯体の還元によるBe–Be結合をもつ錯体の合成が試みられてきた[1–5]。しかし、いずれも配位子や溶媒の活性化から生じた副生成物を得たのみであった。

今回の著者であるオックスフォード大学のBoronski博士とAldridge教授は、このBe–Be結合に着目してベリリウム化学の発展に尽力している。2023年には、ベリロセン(Cp–Be–Cp)をマグネシウム錯体で還元することで、Be–Be結合をもつ初の安定な錯体であるジベリロセン(Cp–Be–Be–Cp)(1)を合成に成功している[1]。今回著者らは、ジベリロセン1の配位子交換により非対称な構造を導入できれば、分極したBe–Be結合というベリリウム化学における新たな知見が得られると考えた。

図1. (A) ベリリウムの化学的特性 (B) 分極したBe–Be結合をもつ錯体(本研究)

 

“A Nucleophilic Beryllyl Complex via Metathesis at [Be–Be]2+

Boronski, J. T.; Crumpton, A. E.; Roper, A. F.; Aldridge, S. Nat. Chem. 2024, 16, 1295–1300. DOI: 10.1038/s41557-024-01534-9

論文著者の紹介

研究者: Josef T. Boronski

研究者の経歴: 
2017                                           MChem (Hons), University of York, UK (Dr. John Slattery)
2021                       Ph.D., University of Manchester, UK (Prof. Stephan T. Liddle)
2021–                                         Postdoc, University of Oxford, UK (Prof. Simon Aldridge)

研究内容: sブロック元素とpブロック元素の低原子価化合物の合成と反応性、有機アクチノイド錯体の基礎化学と電子構造

 

研究者: Simon Aldridge (研究室HP)

研究者の経歴
1992                                           BA (Hons), Jesus College, University of xford, UK
1996                                           Ph.D., University of Oxford, UK (Prof. Tony Downs)
1996–1997                              Postdoc, University of Notre Dame, USA (Prof. Thomas Fehlner)
1997–1998                              Postdoc, Imperial College London, UK (Prof. D. Michael P. Mingos)
1998–2004                              Lecturer, School of Chemistry, Cardiff University, UK
2004–2006                              Senior lecturer, Cardiff University, UK
2007–2010                              Senior lecturer, University of Oxford, UK
2010–                                         Professor, University of Oxford, UK

研究内容: 13族および14族元素を配位原子とする新規配位子の設計と合成

 

論文の概要

著者らは錯体1における配位子交換によって非対称ジベリリウム錯体を合成した(図2A)。1とKCp*をベンゼン中80° Cで4日間反応させると錯体2が得られた。また、N-複素環式ボリルオキシ(NHBO)配位子カリウム塩K[(HCDippN)2BO]とは室温1時間で反応が進行し、錯体3が得られた。

合成した23の非対称な構造はX線結晶構造解析により確認された。2のBe–BeおよびBe–Cp間距離はどちらも1と同程度である。一方で、3のBe–BeおよびBe–Cp間距離はどちらも1や2と比較して長く、3のBecpが電子豊富であると示唆された(図2B)。つまり、今回合成した二つの非対称な錯体のうち、3は配位子交換前の1とは大きく異なる分極をもつと予想される。加えて、9Be NMRにおける3の大きくシフトの異なる二つのピークも、錯体3の分極構造を示唆している。

分極が予想される3の電子構造と結合に対するさらなる理解のために量子化学計算が実施された。ELF計算における等値面はドナーアクセプター型結合に見られる半球状であり、Be–Be結合の分極による強いドナーアクセプター結合性が示された[6–8]。実験で得られたX線結晶構造解析における残留電子密度マップも同様の半球状であり、ELF計算の結果とよく一致した(図2C)。その他、QTAIMやNBOといった複数の理論解析においても、3のBeCP–BeNHBO結合はBeCP0→BeNHBOIIと表記できるほどの高度な分極構造を示した(詳細は論文参照)。

分極したBe–Be結合の反応性調査のため3に[CPh3][B(C6F5)4]を作用させると、求核性のベリリルアニオン[BeCp]が求電子性の[CPh3]+に移動した4と錯体5が形成された(図2D)。つまり、分極したBe–Be結合をもつ錯体3のベリリルアニオン供与源としての機能が明らかとなった。

図2. (A) ジベリロセン1の配位子交換 (B) X線結晶構造解析 (C) 計算結果(ELF)と実験結果(SCXRD)の比較 (論文より引用) (D) 錯体3の反応性

 

以上、分極したBe–Be結合をもつ錯体が合成され、ベリリルアニオン供与能が確認された。発展途上にあるベリリウムの化学のさらなる探究に期待が高まる。

参考文献

  1. Boronski, J. T.; Crumpton, A. E.; Wales, L. L.; Aldridge, S. Diberyllocene, a Stable Compound of Be(I) with a Be–Be Bond. Science 2023, 380, 1147–1149. DOI: 1126/science.adh4419
  2. Boronski, J. T. Alkaline Earth Metals: Homometallic Bonding. Dalton Trans. 2024, 53, 33–39. DOI: 1039/D3DT03550F
  3. Bonyhady, S. J.; Jones, C.; Nembenna, S.; Stasch, A.; Edwards, A. J.; McIntyre, G. J. β-Diketiminate-stabilized Magnesium(I) Dimers and Magnesium(II) Hydride Complexes: Synthesis, Characterization, Adduct Formation, and Reactivity Studies. Chem. Eur. J. 2010, 16, 938–955. DOI: 10.1002/chem.200902425
  4. Pearce, K. G.; Hill, M. S.; Mahon, M. F. Beryllium-centred C–H Activation of Benzene. Chem. Commun. 2023, 59, 1453–1456. DOI: 10.1039/D2CC06702A
  5. Arrowsmith, M.; Hill, M. S.; Kociok-Köhn, G.; MacDougall, D. J.; Mahon, M. F.; Mallov, I. Three-coordinate Beryllium β-Diketiminates: Synthesis and Reduction Chemistry. Inorg, Chem. 2012, 51, 13408–13418. DOI: 10.1021/ic3022968
  6. Dang, Y.; Meng, L.; Qin, M.; Li, Q.; Li, X. Stability and Donor–acceptor Bond in Dinuclear Organometallics CpM1–M2Cl3 (M1, M2 = B, Al, Ga, In; Cp = η5-C5H5). Mol. Model. 2018, 24, 7. DOI: 10.1007/s00894-017-3539-x
  7. Huo, S.; Meng, D.; Zhang, X.; Meng, L.; Li, X. Bonding Analysis of the Donor–acceptor Sandwiches CpE–MCp (E = B, Al, Ga; M = Li, Na, K; Cp = η5-C5H5). Mol. Model. 2014, 20, 2455. DOI: 10.1007/s00894-014-2455-6
  8. Bianchi, R.; Gervasio, G.; Marabello, D. Experimental Electron Density Analysis of Mn2(CO)10: Metal–metal and Metal–ligand Bond Characterization. Inorg. Chem. 2000, 39, 2360–2366. DOI: 10.1021/ic991316e
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 糸状菌から新たなフラボノイド生合成システムを発見
  2. 不溶性アリールハライドの固体クロスカップリング反応
  3. キノリンをLED光でホップさせてインドールに
  4. 有機合成化学協会誌2022年8月号:二酸化炭素・アリル銅中間体・…
  5. 【10月開催】第2回 マツモトファインケミカル技術セミナー 有機…
  6. 液体中で高機能触媒として働くペロブスカイト酸化物の開発
  7. ニトリル手袋は有機溶媒に弱い?
  8. 光親和性標識法の新たな分子ツール

注目情報

ピックアップ記事

  1. 塩基と酸でヘテロ環サイズを”調節する”
  2. 「パキシル」服用の自殺者増加 副作用の疑い
  3. Dead Endを回避せよ!「全合成・極限からの一手」⑦(解答編)
  4. 「関東化学」ってどんな会社?
  5. 高速エバポレーションシステムを使ってみた:バイオタージ「V-10 Touch」
  6. 君には電子のワルツが見えるかな
  7. パット・ブラウン Patrick O. Brown
  8. 有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級アルキル基導入・コンプラナジン・アライン化学・糖鎖クラスター・サリチルアルデヒド型イネいもち病菌毒素
  9. 文具に凝るといふことを化学者もしてみむとてするなり : ③「ポスト・イット アドバンス2」
  10. 2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP